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Abstract. The second virial coefficient for a gas of anyons is computed (i) by discretising 
the two-particle spectrum through the introduction of a harmonic potential regulator and 
(ii) by considering the problem in the continuum directly through heat kernel methods. 
In both cases the result of Arovas et a /  is recovered. 

1. Introduction 

In the last decade there has been strong interest in the study of two-dimensional systems 
of charged flux tubes interacting electromagnetically [ 11. One of the most interesting 
features about these objects concerns their statistics, which has been interpreted by 
some authors as exotic or fractional [1,2], interpolating between the bosonic and 
fermionic cases. For this reason these flux tubes have been called anyons. From a 
point of view of field theory, such objects can be described semiclassically since they 
arise as classical solutions of a Higgs model in 2+  1 dimensions with topological 
Chern-Simons terms [3]. The complete derivation of the statistical mechanics of a gas 
of anyons is an open problem that has been partially addressed by computing the 
second virial coefficient [4]. Furthermore, several authors have stressed the possible 
relevance of anyons for the fractional quantum Hall effect and two-dimensional models 
of high-T, superconductors [ 5 ] .  

In this paper we will mainly focus on the quantum statistical mechanics of anyons. 
The outline of the paper is as follows: we first recall the classical picture of pairs of 
anyons. This is interesting for pedagogical reasons, and is also related to a recent 
analysis of (2 + 1)-dimensional gravity [6]. We then review the quantum mechanics 
of pairs of anyons possibly interacting with a harmonic potential. As for the statistics 
we adopt a conservative point of view where the wavefunction is single valued and 
the statistics of the charged flux tubes are either bosonic or fermionic according to the 
type of particles one has. We also analyse the case of pairs of anyons in a constant 
magnetic field. We then address the question of computing the second virial coefficient 
for a low density gas of anyons. I n  the original formulation of the problem [4], (i) 
one either puts the system in a box with appropriate boundary conditions leading to 
a discrete spectrum, then one takes the limit of infinite volume which gives a non-trivial 
finite result; or ( i i )  one tackles directly the path integral computation of the two-point 
Green function; but again a regularisation is used by inserting an appropriate conver- 
gent factor. We first show that a very simple physical interpretation can be given to 
the regularisation used in (ii): namely, it is equivalent to compute the two-body partition 
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function of anyons interacting with a harmonic force and then to take the limit of a 
vanishing harmonic force. In this approach, the harmonic potential acts as a regulator 
that yields a discrete energy spectrum and allows us to recover the second virial 
coefficient in a straightforward way. It would be obviously more satisfactory to compute 
the second virial coefficient directly in the continuum, without relying on regularisation 
procedures (finite volume or harmonic well) that are in fact equivalent to discretising 
the spectrum. A first try consists in evaluating the partition function in terms of the 
scattering data of the system [ 7 ] .  This approach, however, fails to give the correct 
two-body partition function because the interacting potential due to anyons has a long 
range. We then tackle directly the two-body partition function in the continuum by 
computing the corresponding Green function, following the work of Marino et al [ 8 ]  
based on heat kernel methods. We stress that this calculation takes place entirely in 
the infinite-volume limit and  leads again to the well known result. This approach 
reveals an  interesting feature, namely that the exchange terms play a very important 
role and indeed are not negligible at high temperature, as in the hard sphere gas case 
[9] (see also the Coulomb problem [lo]). In  our case this peculiar feature is due to 
the absence of a length scale (as we consider point vortices). 

The model is defined in the following way: we consider identical particles of mass 
m carrying a charge e and a flux tube I$ and living in a two-dimensional space. These 
particles are either bosons or fermions. Following [ l ,  21 we take for the classical 
two-particle Hamiltonian 

2 m H =  p , - - U '  + p 2 + - u U )  ( : ) > (  :)* 
where r = r ,  - r2 and U'= k x r / r ,  k being the unit vector orthogonal to the two- 
dimensional plane. 

2. The classical picture 

The classical picture of the system (1) was first discussed by Leinaas and Myrheim 
[ 2 ] .  They found that the configuration space of a system of N identical particles living 
in an  n-dimensional Euclidean space E, is 

E r I S ,  = E,r(n,  N )  ( 2 )  

where SN is the symmetric group of permutations of N identical objects, r ( n ,  N )  is 
the relative configuration space of nN-n dimensions, and E,  is the centre-of-mass 
configuration space. We recall that r (n ,  N )  = Enbt-,,/Sb. In the following we will 
concentrate on the case N = 2 .  

In the case where n = 1 the relative configuration space is R + u  (0 )  with (0 )  
included if one allows the two particles to coincide. The interesting feature of this 
configuration space is that it has a boundary which allows for non-trivial interactions 
on it: for example, one can have a repulsive force at the origin of R' that acts only 
when the particles coincide. 

In  the case of interest where n = 2 ,  the relative configuration space is a folded cone 
K = I O ,  CO[ x P , (  R )  U { 0} with an  apex { 0} included if one allows the two particles to 
coincide. Any point P on this cone corresponds to a couple of identical particles in 
the physical space at a distance r = OP from each other. It is interesting to note that, 
as in the one-dimensional case, an  interaction can be plugged in at the boundary of 
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K ,  which is the apex (0). For instance, in the case of real flux tubes, one needs to 
remove not only the apex but also a small region around it, allowing a magnetic flux 
to pass through the hole. By unfolding any point on the cone we recover a good 
representation of a system of two anyons in a plane. Moreover, any interaction that 
could be introduced on the cone, like a harmonic force, will yield an  interaction 
between the two anyons once unfolded. 

The configuration space of a system of two anyons is locally equivalent to the 
curved ( 2 +  1)-dimensional gravity space [6]. Indeed, the scattering of a test particle 
of mass m in the field of a stationary point of mass m, gives rise to a locally flat conical 
metric, the angle of the cone being sin-' y with 1 - y = 4Gm, ( G  is Newton's constant). 
The corresponding relative classical Hamiltonian is then 

mt2 L' H = 7 + -  
2y 2mr2 (3) 

One can compare this with the relative Hamiltonian deduced from (1) which is 

where L is the canonical angular momentum. Comparing the two Hamiltonians leads 
to identifying y 2  = ( L -  e4 / r ) ' /L2 .  It is interesting to note that in this picture the 
angle of the cone varies with the angular momentum for a given flux. When the flux 
vanishes (the free case) the cone is completely open, which indeed in terms of the 
( 2 +  1)-dimensional gravity leads to a flat space without matter. 

3. Quantum mechanics 

Let us now turn to the quantum treatment of the Hamiltonian (1). Transforming as 
usual to the centre of mass and relative coordinates, and  leaving aside the free motion 
of the centre of mass, the relative Hamiltonian takes the form 

2 1  1 i e 4  e2qb2 
mhr=-a,--ar--aa',+2--a +- 

r r2  r r 2  U r 2 r 2 *  

Parametrising the relative wavefunction as exp(i M e ) f (  r )  where M is standard, 
namely M = 2 p  for bosons and M = 2 p  + 1 for fermions (this assignment corresponds 
to a particular choice of the angular momentum operator [ 1 l]), leads to the following 
Schrodinger equation: 

Thus, as expected from the classical analysis, (6) is nothing but the relative 
Hamiltonian of a free particle where the angular momentum M is replaced by M '  = 
M - a with a = e4/rr. It follows immediately that the spectrum of h, is continuous 
and that the radial wavefunction is JI,.,(kr). (Note again the analogy with the ( 2 +  
1)-dimensional gravity case where the wavefunction is J I M l l y (  kr)  [6].) 

In the case where a harmonic potential term m(wr/2)' is present a standard 
calculation yields the following energy levels [ l ,  21 (energy, degeneracy): ( ( 2 j +  1 + 
2A)w,  j +  1) and ( ( 2 j +  1 - 2 A ) w ,  j )  where j is a positive or  null integer. A stands for 
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the fractional part of e1#~/2.rr or  e4 /27r+$ ,  depending on whether the particles are 
bosons or  fermions. The usual bosonic case without flux ( ( 2 j  + l ) w ,  2 j+  1 )  is recovered 
by letting A = 0 and  the fermionic case ( ( 2 j ) w ,  2 j )  by letting A = 1. 

It is also interesting to investigate the case where one adds an  external orthogonal 
magnetic field to the system. The centre-of-mass Hamiltonian describes the motion of 
a (2m,  2 e )  particle orbiting in the orthogonal magnetic field. In  the symmetric gauge 
where the vector potential takes the form A = --Y x B / 2  the Schrodinger equation for 
the relative motion becomes 

(7) 4 

As above, the flux tubes shift the orbital angular momentum from M to M ’ .  It is 
clear that the external magnetic field alters the spectrum dramatically. For instance 
in the case where w is set to zero ( a  particular case of interest where the harmonic 
well term is entirely due  to the magnetic field) one gets for the relative motion 
( ( j + $ ) e B / m , a )  and ( ( j + i + 2 A ) e B / m ,  l + j / 2  f o r j  even and  l + ( j - 1 ) / 2  f o r j  odd). 
In the case where the w-regulator is present the degeneracy is completely lifted and  
one obtains the energy levels [ n + & + ( l p l * A ) ( l *  B / B ’ ) ] e B ’ / m  with n, IpI integers 2 0  
and where the * signs refer to p 3 0  or p < O  accordingly ( B ’ * -  B 2 =  ( 2 m ~ / e ) ~ ) .  

4. Statistical mechanics: the second virial coefficient 

Let us first recall the basic definition of the second virial coefficient [ 121. For P = 1/ kT 
the grand partition function is defined in terms of the fugacity z by 

.- 

where HN denotes the Hamiltonian for a N-particle system. In a low density approxi- 
mation, we can use the cluster expansion: 

Here V is the volume and  bl stands for the lth cluster integral. Comparing ( s a )  
and ( 8 6 )  leads to 

1 
V 

1 

6 ,  = - Tr exp( -PHI) ( 9 a )  

(96) b -- {Tr exp(-PH,) -[Tr exp(-PH,)I2}. 
* - 2 v  

The equation of state for a real gas expanded in powers of the density p is 

(10) 
N 

P V = - ( l + a , p + a , p * + .  . . )  
P 

where the ai stand for the virial coefficients. The computation of as( T )  alone requires 
the knowledge of two-body interactions. Indeed one has 

a, = - b,/ 6:. ( 1 1 )  
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In two spatial dimensions 6, = 1 / A 2  where A is the thermal wavelength of a particle 
of mass m and  is given by A = ( 2 ~ p / m ) ” ~ .  Let us introduce the two-point Green 
function for the relative motion G(r ,  r’) = (r’lexp(-~hrei)lr) .  One has 6, = 
( l /A2)  j d 2 r  G(r,  r )  - V/2A4 (in this formula the centre-of-mass motion has been 
extracted). It follows that a, = - A 2 j d 2 r G ( r ,  r ) +  V/2 where G has to be properly 
symmetrised or  antisymmetrised. For example, in the free case one obtains 

VP a2 = - A 2  d2r(Go(r,  r )  * Go(r, - r ) )+  V / 2  = +- I 2m 

with 

m 

4@ 
Go(r, r’) =-exp[-m(r-r‘)2/4p] 

where F signs refer to bosons or  fermions respectively. If one lets Gin, = G - Go, the 
second virial then takes the form: 

a2 = F- 1 * 4 d 2 r (  Gin,( r, r)  * Gin,( r, - r ) )  . (13) 
2m T p (  I 1 

In the previous section we have seen that, if we introduce above the long-range 
potential due  to the flux tubes, an  w- harmonic potential betwen the anyons, then the 
spectrum becomes entirely discrete. The purpose of what follows is to show that in 
the limit w goes to 0 (which ensures the transition to a continuous spectrum) one can 
obtain a finite result for the second virial coefficient. Indeed the regularised relative 
two-body partition function is in this case 

1 cosh pw(2A- 1) - _  - 
2 sinh’pw 

Zin, must vanish when the electromagnetic interaction between the anyons is switched 
off: it follows that it must be defined as 

P 

Zint=f d2r(Gint ( r ,  r )+  Gin,(r, - r ) ) =  W - 0  l im(ZW(A)-ZW(0))  (15a )  J 
in the case of bosons and  

Zin,=i d2r(Gint ( r ,  r ) -Gin t ( r ,  - r ) ) =  lim(Z,(A) -ZW(f)) I W - 0  

in the case of fermions. From (13) and  (14) one thus obtains for the second virial 
coefficient respectively: 

T P  a, = -- [1+8A(A- I ) ]  2m 

VP 

2m 
U ,  =- [l  - 8(A -&)?I.  

These results coincide with the expressions derived in [4]: moreover, the harmonic 
well regularisation is in fact equivalent to the ‘path integral’ approach used in [4]. 
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Indeed it is not difficult to realise that (14) follows from equations (22) and (23) [4] 
and  by identifying a = 1 + E = cosh Po. 

Naturally, it would be more satisfactory to obtain this result directly in the con- 
tinuum. One  way out could be to follow Uhlenbeck and Beth [7], and  to express Z,,, 
in terms of the scattering data for the corresponding relative two-body problem. In 
two spatial dimensions, denoting by &(k)  the phase shift of the partial wave of 
momentum k and  angular momentum m, one has ( m  is even for bosons, odd for 
fermions) 

d 6,  2. = - exp( -pk2) - dk. 
?? JOw ,n d k  int 

It is clear that since the phase shifts lS,(k)l= m / 2  are momentum independent, 
(17) seems to give the naive result Z,,, = 0. The Uhlenbeck-Beth formula leads to this 
paradoxical result because of the long-range character of the two-body potential, a 
regime for which a treatment in terms of scattering data is known to be singular [13] 
(actually we would encounter the same difficulty in three dimensions with the same 
type of potential). The origin of this paradox can be traced back to the fact that Z,,, 
does not depend on the temperature: this means that the introduction of a long-range 
potential amounts to no more than altering the low energy part of the density of states. 
Indeed, the shift in the density of states p (k ) -po (k )  = ( l / ~ )  E, dS,/dk, which is 
nothing more than the inverse Laplace transform of the two-body partition function, 
is equal to A ( A - l ) a ( k )  and is thus concentrated at the bottom of the spectrum. 
Naturally, this result cannot be reached by a naive counting of modes in the continuum, 
which is the basis of the derivation of (17). 

Let us now compute the two-point Green function G(r, r', p )  directly in the 
continuum. Its Laplace transform G(r, r ' ,  A )  = j y  d p  G(r, r ' ,  p )  exp[-(PA*)] is given 
by 

0; 

+ exp ( - i m A 8 ) J ,  - a  ( kr ) J ,  -a ( kr ') ) 
m = l  

where A 8  = 8 - 8'. Without loss of generality it has been assumed that O s  (Y < 1. 
Equation (18) is obviously periodic in (Y with a period equal to 1. Following Marino 
et a1 [8], it is tedious but straightforward to rewrite (18) as 

exp[ff ( v  - w ) l  
(2??)-  J R' 

sin T(Y 
G(r, r ' ,  A )  = -- 

1 +exp(iA8 + U - w)  
dv  dw 

x exp( -Ar cosh w - A r '  cosh v )  + G,",,,( r, r', A )  (19) 

where G;o,e(r, r ' ,  A )  is given by 

Here the contour integration C in the complex w-plane is a rectangle [-a,  a ]  along 
the real axis and [ - i r ,  i r ]  along the imaginary axis. We stress that G:o,e depends on 
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a as soon as r f r’, which is a significant difference with [8] where G;ole is actually 
Go. Indeed, in  our case one gets 

G,”,,,(r, r’, A )  = exp(iaAO)G,(r, r‘, A )  

G$,,( r, r’, A )  = cos axGO( r, r‘, A )  

for A %  < x 

for A 0  = x. 
(21) 

We are mainly interested in evaluating (18) in the cases r = *r‘ which are the only 
relevant ones for the computation of the second virial coefficient according to (13). 
From (19) it thus follows that 

exp[a(v - w ) l  I 1 +exp(iAO + U - w )  
sin rra 

G,,,(r, *r, A )  = -7 du dw 
(2x) R 2  

xexp(-Ar(cosh w4cosh u)]+G,(r, k r ,A)(cos  aA%-1)  (22) 

where A 0  = O( x )  when r = r‘ ( r  = -r‘). Note that for anticoinciding points the factor 
cos a x  - 1 is in complete agreement with the corresponding singularity in the forward 
scattering amplitude obtained by Ruijsenaars [ 131. 

In (22) the free part has been explicitly subtracted from the two-body interacting 
part in the two-point Green function, as it should be, but we still have to evaluate the 
remaining integrals. After some simple manipulations and a trivial integration on r, 
these contributions can be recast as 

Oi exp(-2a8) 1 
dt3 

1*exp(-2S) cosh26 

where the i signs refer to the cases r = *r’ (s = ( w  + v)/2 and 8 = ( w  - u)/2). Both 
contributions can be computed in the same way through integration by parts, with the 
notable difference that in the case r = -r‘ the integral is divergent at the origin. This 
means that some regularisation procedure has to be used to render this integral finite. 
According to (13) the 5 d2r(Gint(r ,  r )*  Gint(r, - r ) )  contributions to a, that one has to 
compute can be written as 

a3 exp(a8) 1 
d 8 7  - 

sinh28 cosh28 

where a = 2 -2a  ( a  = 2 a )  in the bosonic case (fermionic case). Choosing the principal- 
value prescription one obtains for the bosonic and fermionic cases respectively: 

-( (1 -a)2-cos - 
2 

1 
2A2 

&(a’-sin2- 7 2 , 

This last result, considered together with the contribution of the pole integral in (22), 
leads through an inverse Laplace transform to the following final expressions for the 
second virial coefficient: 

-- xp { 1 +2[( 1 - ff)’- l]} 
2m 

TP - ( 1 - 2a  2 ) *  
2m 
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These results coincide with those derived in the discrete spectrum case (16~1, b )  
through the identifications cy = 2A in the bosonic case and cy = 2 5  - 1 in the fermionic 
case (note that (26b) can be obtained from (26a)  by replacing cy by 1 + cy and that the 
allowed ranges of cy are now 0 s  cy < 2 and -1 < cy < 1, respectively, corresponding to 
summations over even or odd m in (18)). We stress again the essential role played by 
the r = -r' contributions, usually exponentially negligible at high temperature. As 
already mentioned above, this is due to the fact that there is no length scale in the 
model. Had we assumed that the flux tubes are impenetrable disks of radius R, the 
integration on space in (22) would have produced an  exponential damping in (23) for 
the exchange term. 

5. Conclusion 

We have calculated the second virial coefficient for a gas of anyons directly in the 
continuum, reproducing the result of Arovas et a1 [4]. Out method, based on the heat 
kernel methods developed in [8], clearly enlightens the role of the exchange terms, 
due to the long-range potential. We have also shown how the regularisation used in 
the original path integral calculation of [4] is equivalent to adding a harmonic interac- 
tion between the anyons, leading to a discrete spectrum. In the continuum another 
possible approach is by using scattering data to compute the two-body partition 
function. However, we have seen that, if one relies on the usual naive prescription, 
the partition function seems to vanish trivially. It would certainly be gratifying to 
extend the formula of Uhlenbeck and Beth [ 7 ]  to the case of long-range potentials 
and  to get a deeper understanding of the peculiar features of the two-body density of 
states. 
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